Package: changepoint 2.3
changepoint: Methods for Changepoint Detection
Implements various mainstream and specialised changepoint methods for finding single and multiple changepoints within data. Many popular non-parametric and frequentist methods are included. The cpt.mean(), cpt.var(), cpt.meanvar() functions should be your first point of call.
Authors:
changepoint_2.3.tar.gz
changepoint_2.3.zip(r-4.5)changepoint_2.3.zip(r-4.4)changepoint_2.3.zip(r-4.3)
changepoint_2.3.tgz(r-4.4-x86_64)changepoint_2.3.tgz(r-4.4-arm64)changepoint_2.3.tgz(r-4.3-x86_64)changepoint_2.3.tgz(r-4.3-arm64)
changepoint_2.3.tar.gz(r-4.5-noble)changepoint_2.3.tar.gz(r-4.4-noble)
changepoint_2.3.tgz(r-4.4-emscripten)changepoint_2.3.tgz(r-4.3-emscripten)
changepoint.pdf |changepoint.html✨
changepoint/json (API)
NEWS
# Install 'changepoint' in R: |
install.packages('changepoint', repos = c('https://rkillick.r-universe.dev', 'https://cloud.r-project.org')) |
Bug tracker:https://github.com/rkillick/changepoint/issues
- HC1 - G+C Content in Human Chromosome 1
- Lai2005fig3 - Normalized glioblastoma profile for chromosome 13
- Lai2005fig4 - Normalized glioblastoma profile for an excerpt of chromosome 7, the EGFR locus.
- ftse100 - FTSE 100 Daily Returns: 2nd April 1984 - 13th September 2012
- wave.c44137 - Wave data from buoy c44137
Last updated 16 days agofrom:4846aff63b. Checks:OK: 9. Indexed: yes.
Target | Result | Date |
---|---|---|
Doc / Vignettes | OK | Nov 03 2024 |
R-4.5-win-x86_64 | OK | Nov 03 2024 |
R-4.5-linux-x86_64 | OK | Nov 03 2024 |
R-4.4-win-x86_64 | OK | Nov 03 2024 |
R-4.4-mac-x86_64 | OK | Nov 03 2024 |
R-4.4-mac-aarch64 | OK | Nov 03 2024 |
R-4.3-win-x86_64 | OK | Nov 03 2024 |
R-4.3-mac-x86_64 | OK | Nov 03 2024 |
R-4.3-mac-aarch64 | OK | Nov 03 2024 |
Exports:BINSEGclass_inputcoefcpt.meancpt.meanvarcpt.regcpt.varcptscpts.fullcpts.full<-cpts.tscpts<-cpttypecpttype<-data.setdata.set.tsdata.set<-decisiondistributiondistribution<-fittedlikelihoodlogLikmethodmethod<-minseglenminseglen<-ncptsncpts.maxncpts.max<-nsegparamparam.estparam.est<-PELTpen.typepen.type<-pen.valuepen.value.fullpen.value.full<-pen.value<-penalty_decisionplotresidualsseg.lenshowsummarytest.stattest.stat<-